A comment on the new Dirac-like spin- $\frac{3}{2}$, wave equation of Jayaraman

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1977 J. Phys. A: Math. Gen. 101439
(http://iopscience.iop.org/0305-4470/10/8/022)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 14:05

Please note that terms and conditions apply.

COMMENT

A comment on the new Dirac-like spin- $\frac{3}{2}$ wave equation of Jayaraman

D L Weaver
Department of Physics, Tufts University, Medford, Massachusetts 02155, USA

Received 5 April 1977

Abstract

The new spin- $\frac{3}{2}$ wave equation of Jayaraman is shown to be an eight-dimensional form of the Dirac equation.

There has been a recent article in this journal (Jayaraman 1976, to be referred to as I) concerning a derivation of a 'new linear Dirac-like spin- $\frac{3}{2}$ wave equation'. The new equation of I was derived from a Schrödinger-type wave equation (Weaver et al 1964, Mathews 1966a, b, 1967a, b, Seetharaman et al 1971, Jayaraman 1973a, b, 1975) in which the wavefunction has eight components and transforms according to the $\left(0, \frac{3}{2}\right) \oplus\left(\frac{3}{2}, 0\right)$ representation of the homogeneous Lorentz group.

The purpose of this comment is to point out that the procedure employed in I seems to produce the Dirac equation itself in an eight-dimensional form rather than a spin- $\frac{3}{2}$ wave equation.

To see this point in a transparent way, it is simplest to change the representation of the matrices used in I which were

$$
\begin{array}{ll}
t_{1} & =2 l_{1}=\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -\mathrm{i} \\
0 & 0 & \mathrm{i} & 0
\end{array}\right], \quad t_{2}=2 l_{2}=\left[\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \mathrm{i} \\
1 & 0 & 0 & 0 \\
0 & -\mathrm{i} & 0 & 0
\end{array}\right], \\
t_{3} & =2 l_{3}=\left[\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & 0 & -\mathrm{i} & 0 \\
0 & \mathrm{i} & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
\end{array}
$$

with the unitary matrix

$$
U=\frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & -\mathrm{i} & -1 \tag{2}\\
1 & 1 & \mathrm{i} & 1 \\
1 & -1 & \mathrm{i} & -1 \\
-1 & 1 & \mathrm{i} & -1
\end{array}\right]
$$

one finds the new representation of the $t_{i}(i=1,2,3)$ to be

$$
U t_{i} U^{\dagger}=\left[\begin{array}{cc}
\sigma_{i} & 0 \tag{3}\\
0 & \sigma_{i}
\end{array}\right] \equiv \Sigma_{i}
$$

where the σ_{i} are the usual representation of the Pauli matrices with

$$
\sigma_{1}=\left[\begin{array}{ll}
0 & 1 \tag{4}\\
1 & 0
\end{array}\right], \quad \sigma_{2}=\left[\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right], \quad \sigma_{3}=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

In this representation, the Dirac-like wave equation found in I has the form

$$
\left(\left[\begin{array}{lr}
0 & \boldsymbol{\Sigma} \cdot \boldsymbol{P} \tag{5}\\
\boldsymbol{\Sigma}, \boldsymbol{P} & 0
\end{array}\right]+\left[\begin{array}{rr}
I & 0 \\
0 & -I
\end{array}\right] m\right)\binom{\chi_{\mathrm{u}}}{\chi_{1}}=\mathrm{i} \frac{\partial}{\partial t}\binom{\chi_{\mathrm{u}}}{\chi_{1}}
$$

or

$$
\begin{equation*}
\boldsymbol{\Sigma} \cdot \boldsymbol{P}_{\chi_{1}}+m \chi_{\mathrm{u}}=\mathrm{i} \frac{\partial}{\partial t} \chi_{\mathrm{u}} \quad \boldsymbol{\Sigma}, \boldsymbol{P}_{\chi_{\mathrm{u}}}-m \chi_{1}=\mathrm{i} \frac{\partial}{\partial t} \chi_{1} \tag{6}
\end{equation*}
$$

for the upper and lower four components χ_{u} and χ_{1}. It is clear, for example, that in a constant, external magnetic field, the eigenvalues of equation (5) are the same (but twice as many) as those of a spin- $-\frac{1}{2}$ Dirac particle. In particular, the non-relativistic limit produces

$$
\begin{equation*}
H_{\mathrm{nr}}=\frac{\pi^{2}}{2 m}-2 \frac{q}{2 m}(\boldsymbol{\Sigma} / 2) \cdot \boldsymbol{B} \tag{7}
\end{equation*}
$$

with $\boldsymbol{\pi}=\boldsymbol{P}-q \boldsymbol{A}, \boldsymbol{A}=\frac{1}{2} \boldsymbol{B} \times \boldsymbol{X}$ and q the charge. Since the non-relativistic magnetic moment interaction is $-g q \boldsymbol{S}, \boldsymbol{B} / 2 \mathrm{~m}$ for spin- \boldsymbol{s} with spin matrices \boldsymbol{S} the identification $\boldsymbol{S}=\boldsymbol{\Sigma} / 2$ demonstrates the spin $-\frac{1}{2}$ content of equations (4) and (6). The only way to avoid this conclusion is to reject the minimal substitution $\boldsymbol{P} \rightarrow \pi$, and to use some complicated interaction in its place. This kind of manipulation would, however, negate any advantage of a Dirac-like wave equation, for which the price of complicated wavefunction transformation has already been paid.

References

Jayaraman J 1973a Nuovo Cim. A 13 877-96

- 1973b Nuovo Cim. A 14 343-62
- 1975 J. Phys. A : Math. Gen. 8 L1-4
- 1976 J. Phys. A: Math. Gen. 9 L131-6

Mathews P M 1966a Phys. Rev. 143 978-85
——1966b Phys. Rev. 143 985-9

- 1967a Phys. Rev. 155 1415-20
- 1967b J. Math. Phys. Sci. 1 197-206

Seetharaman M, Jayaraman J and Mathews P M 1971 J. Math. Phys. 12 835-40
Weaver D L, Hammer C L and Good R H Jr 1964 Phys. Rev. 135 B241-8

